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𝑥

5.1 nth Roots and Rational 
Exponents
After this lesson…

• I can explain the meaning of a rational exponent.

• I can evaluate expressions with rational exponents.

• I can solve equations using nth roots.
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𝑥5.1 nth Roots and Rational Exponents

• Root

• If a2 = b, then a is a square (2nd) root of b

• If an = b, then a is the nth root of b

• Parts of a radical

Radical Sign
Index

Radicand

3
64
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𝑥5.1 nth Roots and Rational Exponents

•Rational Exponents
• 𝑏 Τ1

𝑛 =
𝑛

𝑏

• 𝑏 Τ𝑚
𝑛 =

𝑛
𝑏𝑚 =

𝑛
𝑏

𝑚

•Evaluate
• 36 Τ1

2

√36 = 6
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𝑥5.1 nth Roots and Rational Exponents

•
1

8

−
1

3 • 27
4

3

8
1
3 =

3
8 = 2

3
27

4
= 34 = 81
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𝑥5.1 nth Roots and Rational Exponents

• Find roots with a calculator

• The 𝑥 or  key is for square roots (either radicand then key or key then 
radicand depending on calculator)

• The 𝑥 𝑦 or 
𝑦

𝑥  or 
𝑥

is for any root (index → key → radicand OR radicand 
→ key → index)

• Try it with 
4

100

3.16
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𝑥5.1 nth Roots and Rational Exponents

• Steps to solve an equation with an exponent

1. Isolate the exponent term

2. Take the root of both sides where the index is the exponent

• If the index is even, put ±

3. Solve

4. Check your answers!!!
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𝑥5.1 nth Roots and Rational Exponents

• Solve. Round to two decimal places, 
if necessary.

• 5x3 = 320

• (x + 3)4 = 24

• 235 #7, 9, 11, 13, 15, 17, 19, 21, 23, 
27, 31, 35, 37, 39, 43, 47, 49, 51, 53, 
55

5𝑥3 = 320
𝑥3 = 64

𝑥 =
3

64 = 4

𝑥 + 3 4 = 24

𝑥 + 3 = ±
4

24

𝑥 = −3 ±
4

24 ≈ −0.79 𝑜𝑟 − 5.21
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𝑥

5-02A Properties of 
Rational Exponents and 
Simplifying Radicals
After this lesson…

• I can simplify radical expressions with rational exponents.

• I can simplify variable expressions containing rational exponents and radicals.
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𝑥
5-02A Properties of Rational 
Exponents and Simplifying Radicals
• Using Properties of Rational Exponents

• 𝑥𝑚 ⋅ 𝑥𝑛 = 𝑥𝑚+𝑛

• 𝑥𝑦 𝑚 = 𝑥𝑚𝑦𝑚

• 𝑥𝑚 𝑛 = 𝑥𝑚𝑛

•
𝑥𝑚

𝑥𝑛 = 𝑥𝑚−𝑛 

•
𝑥

𝑦

𝑚
=

𝑥𝑚

𝑦𝑚 

• 𝑥−𝑚 =
1

𝑥𝑚
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𝑥
5-02A Properties of Rational 
Exponents and Simplifying Radicals
• 61/2  61/3 • (271/361/4)2

6
1
2

+
1
3 → 6

3
6

+
2
6 → 6

5
6

27
1
3

2

 6
1
4

2

→ 27
2
36

1
2 → 96

1
2
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𝑥
5-02A Properties of Rational 
Exponents and Simplifying Radicals
• (43w3)−1/3

•
𝑡

𝑡
3
4

43 −
1
3𝑤3 −

1
3 → 4−1𝑤−1 →

1

4
 

1

𝑤
→

1

4𝑤

𝑡1−
3
4  → 𝑡

1
4
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𝑥
5-02A Properties of Rational 
Exponents and Simplifying Radicals
• Simplifying Radicals

• Remove any perfect roots

• Rationalize denominators

•
4

64

•
3

625𝑥5

4
2 · 2 · 2 · 2 · 2 · 2 =

4
2 · 2 · 2 · 2 · 2 · 2 = 2

4
4

3
5 · 5 · 5 · 5 · 𝑥 · 𝑥 · 𝑥 · 𝑥 · 𝑥 =

3
5 · 5 · 5 · 5 · 𝑥 · 𝑥 · 𝑥 · 𝑥 · 𝑥 = 5𝑥

3
5𝑥2
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𝑥
5-02A Properties of Rational 
Exponents and Simplifying Radicals

•
4 7

8
•

5 𝑥5

𝑦8

4 7

8
=

4
7

4
8

=

4
7

4
2 · 2 · 2

4
7

4
2 · 2 · 2

·

4
2

4
2

4
14

2

5
𝑥5

5
𝑦8

=
5 𝑥 · 𝑥 · 𝑥 · 𝑥 · 𝑥

5 𝑦 · 𝑦 · 𝑦 · 𝑦 · 𝑦5 𝑦 · 𝑦 · 𝑦
=

𝑥

𝑦
5

𝑦3
·

5
𝑦2

5
𝑦2

=
𝑥 ·

5
𝑦2

𝑦2
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𝑥
5-02A Properties of Rational 
Exponents and Simplifying Radicals

•
1

7−2
•

2

3+ 5

1

7 − 2
·

7 + 2

7 + 2
7 + 2

7 + 2 7 − 2 7 − 4
7 + 2

3

2

3 + 5
·

3 − 5

3 − 5

=
6 − 2 5

9 − 3 5 + 3 5 − 5

=
6 − 2 5

4

=
3 − 5

2
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𝑥

5-02B Operations with 
Radicals
After this lesson…

• I can simplify radical expressions with rational exponents.

• I can simplify variable expressions containing rational exponents and radicals.
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𝑥5-02B Operations with Radicals

• Using Properties of Radicals

• Product Property → 

•
𝑛

𝑎 ∙ 𝑏 = 𝑛 𝑎 ∙
𝑛

𝑏

• Quotient Property → 

•
𝑛 𝑎

𝑏
=

𝑛 𝑎
𝑛

𝑏
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𝑥5-02B Operations with Radicals

•
3

25 ∙
3

5 •
3

32𝑥
3

4𝑥

3
25 · 5 =

3
125 = 5

3 32𝑥

4𝑥
=

3
8 = 2
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𝑥5-02B Operations with Radicals

• Adding and Subtracting Roots and Radicals

• Simplify the radicals

• Combine like terms

• 5(43/4) − 3(43/4)

2(43/4)
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𝑥5-02B Operations with Radicals

•
3

81 −
3

3 • 2
4

6𝑥5 + 𝑥
4

6𝑥

3
3 · 3 · 3 · 3 −

3
3 = 3

3
3 −

3
3 = 2

3
3

2𝑥
4

6𝑥 + 𝑥
4

6𝑥 = 3𝑥
4

6𝑥
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𝑥

5.3 Graphing Radical 
Equations
After this lesson…

• I can graph radical functions.

• I can describe transformations of radical functions.

• I can write functions that represent transformations of radical functions.
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𝑥5.3 Graphing Radical Equations

• Work with a partner.

• Graph each function. How are the graphs alike? How are they different?

• i. 𝑓 𝑥 = 𝑥

• ii. 𝑓 𝑥 = 3 𝑥

• iii. 𝑓 𝑥 = 4 𝑥

• iv. 𝑓 𝑥 = 5 𝑥
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𝑥5.3 Graphing Radical Equations

domain x≥0
range y≥0

Domain: all real numbers
Range: all real numbers

𝑦 = 𝑥 𝑦 = 3 𝑥

√x → domain x≥0; range y≥0
3√x → domain x all real numbers; range y all real numbers
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𝑥5.3 Graphing Radical Equations

• How graphs transform

• 𝑦 = 𝑎 𝑏 𝑥 − ℎ + 𝑘

• 𝑦 = 𝑎
3

𝑏 𝑥 − ℎ + 𝑘

Where
• a vertical stretch by factor of a

• b horizontal shrink by factor of 
1

𝑏
• If a is −, reflection over x-axis
• If b is −, reflection over y-axis
• h translates right
• k translates up

• Graph by making a table of values.
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𝑥5.3 Graphing Radical Equations

• Describe the transformation of f 
represented by g. Then graph each 
function.

• 𝑓 𝑥 = 𝑥; 𝑔 𝑥 = 𝑥 + 2 − 3

• 𝑓 𝑥 = 3 𝑥; 𝑔 𝑥 = −
3

2𝑥
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𝑥5.3 Graphing Radical Equations

• The function 𝐸 𝑑 = 0.25 𝑑 approximates the number of seconds it takes a 
dropped object to fall d feet on Earth. The function J(d) = 0.63 ⋅ E(d) 
approximates the number of seconds it takes a dropped object to fall d feet on 
Jupiter. How long does it take a dropped object to fall 81 feet on Jupiter?

𝐸 81 = 0.25 81 = 2.25
𝐽 81 = 0.63 · 𝐸 81 = 0.63 · 2.25 = 1.42 𝑠
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𝑥5.3 Graphing Radical Equations

• Let the graph of g be a horizontal stretch by a factor of 3, followed by a 
translation 6 units right of the graph of 𝑓 𝑥 = 3 𝑥. Write a rule for g.

First 𝑏 =
1

3

𝑔 𝑥 =
3 1

3
𝑥

Second ℎ = 6

𝑔 𝑥 =
3 1

3
𝑥 − 6

𝑔 𝑥 =
3 1

3
𝑥 − 2
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𝑥5.3 Graphing Radical Equations

• Graphing horizontal parabolas and 
circles

• Solve the equation for y.

• Create a table of values.

• Plot the points and draw graph.

• Graph −
1

5
𝑦2 = 𝑥. Identify the vertex 

and the direction that the parabola 
opens.

−
1

5
𝑦2 = 𝑥

𝑦2 = −5𝑥

𝑦 = ± −5𝑥
Opens left, vertex (0, 0)
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𝑥5.3 Graphing Radical Equations

• Graph 𝑥2 + 𝑦2 = 49. Identify the 
radius and the intercepts.

• 250 #1, 5, 9, 13, 17, 21, 25, 29, 33, 
37, 39, 41, 45, 49, 59, 67, 69, 71, 73, 
79

𝑥2 + 𝑦2 = 49
𝑦2 = 49 − 𝑥2

𝑦 = ± 49 − 𝑥2

Radius = 7
x-ints: (±7, 0)
y-ints: (0, ±7)
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𝑥

5.4 Solving Radical 
Equations and Inequalities
After this lesson…

• I can identify radical equations and inequalities.

• I can solve radical equations and inequalities.

• I can identify extraneous solutions of radical equations.

• I can solve real-life problems involving radical equations.
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𝑥
5.4 Solving Radical Equations and 
Inequalities
• Work with a partner.

• a. Two students solve the equation 𝑥 + 2 = 5𝑥 + 16 as shown. Justify each 
solution step in the fi rst student’s solution. Then describe each student’s 
method. Are the methods valid? Explain.

a. Square each side of the equation; Simplify; Combine like terms; Factor; Set each 
factor equal to 0; Simplify; Student 1 squared each side of the equation and solved 
algebraically. Student 2 graphed each side of the equation and found the point of 
intersection; yes; Both methods are mathematically correct.
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𝑥
5.4 Solving Radical Equations and 
Inequalities
• Radical Equation

• Equation containing a radical

• Steps

1. Isolate the radical

2. Raise both sides to whatever the index is (or the reciprocal of the 
exponent)

3. Solve

4. Check your answers!!!
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𝑥
5.4 Solving Radical Equations and 
Inequalities

•5 − 4 𝑥 = 0 •3𝑥
4

3 = 243

5 = 4 𝑥 → 54 = 𝑥 → 𝑥 = 625

𝑥
4
3 = 81 → 𝑥 = ±81

3
4 = ±27
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𝑥
5.4 Solving Radical Equations and 
Inequalities

• 2𝑥 + 8 − 4 = 6 • 4𝑥 + 28 − 3 2𝑥 = 0

2𝑥 + 8 = 10 → 2𝑥 + 8 = 100 → 2𝑥 = 92 → 𝑥 = 46

4𝑥 + 28 = 3 2𝑥 → 4𝑥 + 28 = 9(2𝑥) → 4𝑥 + 28 = 18𝑥 → 28 = 14𝑥 → 𝑥 = 2
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𝑥
5.4 Solving Radical Equations and 
Inequalities

• 𝑥 + 2 = 2𝑥 + 28

• Check!

• 258 #1, 5, 9, 13, 17, 21, 25, 29, 31, 33, 37, 41, 45, 49, 51, 57, 61, 69, 77, 81

𝑥 + 2 2 = 2𝑥 + 28  𝑥2 + 4𝑥 + 4 = 2𝑥 + 28 → 𝑥2 + 2𝑥 − 24
= 0 → (𝑥 + 6)(𝑥 − 4) = 0 → 𝑥 = −6, 4

Check

-6: −6 + 2 = 2 −6 + 28 → − 4 = −12 + 28 → − 4 = 4 False

4: 4 + 2 = 2 4 + 28 → 6 = 36 → 6 = 6  True
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𝑥

5.5 Performing Function 
Operations
After this lesson…

• I can explain what it means to perform an arithmetic operation on two functions.

• I can fi nd arithmetic combinations of two functions.

• I can state the domain of an arithmetic combination of two functions.

• I can evaluate an arithmetic combination of two functions for a given input.
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𝑥5.5 Performing Function Operations

• Work with a partner. Consider the 
graphs of f and g.

• a. Describe what it means to add two 
functions. Then describe what it 
means to subtract one function from 
another function.
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𝑥5.5 Performing Function Operations

• Sometimes for your problems you need to repeat several calculations over 
and over again (think science class).  

• It would be quicker to combine all the equations that you are using into one 
equation first, so that you only have to do one equation each time instead of 
many.
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𝑥5.5 Performing Function Operations

• Ways to combine functions

• Addition:   (𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)

• Subtraction: 𝑓 − 𝑔 𝑥 = 𝑓 𝑥 − 𝑔(𝑥)

• Multiplication: 𝑓 · 𝑔 𝑥 = 𝑓 𝑥 · 𝑔(𝑥)

• Division:  
𝑓

𝑔
(𝑥) =

𝑓 𝑥

𝑔 𝑥
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𝑥5.5 Performing Function Operations

• Given 𝑓(𝑥) = 5 𝑥 and 𝑔 𝑥 = −8 𝑥 find

• (𝑓 + 𝑔)(𝑥) 

• (𝑓 − 𝑔)(𝑥) 

• (𝑓 · 𝑔)(𝑥) 

•
𝑓

𝑔
(𝑥) 

−3 𝑥  𝐷:  𝑥 ≥ 0
13 𝑥 𝐷:  𝑥 ≥ 0
−40𝑥 𝐷:  𝑥 ≥ 0

−
5

8
  𝐷:  𝑥 >  0
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𝑥5.5 Performing Function Operations

• Let 𝑓 𝑥 = 2𝑥3 + 4𝑥2 − 8𝑥 + 4 and 𝑔 𝑥 = 3𝑥3 − 5𝑥2 + 6𝑥 − 9. Find 
(𝑓 − 𝑔)( 𝑥) and state the domain. Then evaluate (𝑓 − 𝑔)(−1). 

𝑓 − 𝑔 𝑥 = −𝑥3 + 9𝑥2 − 14𝑥 + 13 and the domain is all real numbers; (f − g)(−1) 
= 37
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𝑥5.5 Performing Function Operations

• Let 𝑓(𝑥) = 𝑥3 and 𝑔 𝑥 = 𝑥. Find 𝑓𝑔 𝑥  and state the domain. Then 
evaluate (𝑓𝑔)(4).

𝑓𝑔 𝑥 = 𝑥3 𝑥 = 𝑥3𝑥
1
2 = 𝑥3+

1
2 = 𝑥

7
2

𝑓𝑔 𝑥 = 𝑥
7

2 and the domain is all nonnegative real numbers; (fg)(4) = 128
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𝑥5.5 Performing Function Operations

• From 2010 to 2020, the populations (in thousands) of City M and City N can 
be modeled by 𝑀 𝑡 = 3.3𝑡3 + 12.1𝑡2 − 0.65𝑡 + 15.8 and 
𝑁 𝑡 = 2.5𝑡3 + 7.8𝑡2 + 0.41𝑡 + 11.9, where t is the number of years since 
2010. Find (M − N)(t) and explain what it represents.

• 265 #1, 3, 5, 7, 9, 15, 17, 21, 23, 25, 27, 29, 35, 37, 39

𝑀 − 𝑁 𝑡 = 0.8𝑡3 + 4.3𝑡2 − 1.06𝑡 + 3.9; 
Subtracting the populations gives how much greater the population of City M is than 
the population City N for t years after 2010.
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𝑥

5.6 Composition of 
Functions
After this lesson…

• I can evaluate a composition of functions.

• I can fi nd a composition of functions.

• I can state the domain of a composition of functions.
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𝑥5.6 Composition of Functions

• Work with a partner. 

• The formulas below represent the temperature F (in degrees Fahrenheit) 
when the temperature is C degrees Celsius, and the temperature C when the 
temperature is K (Kelvin).

𝐹 =
9

5
𝐶 + 32 𝐶 = 𝐾 − 273

• a. Write an expression for F in terms of K.

𝐹 =
9

5
𝐾 −

2297

5

52



𝑥5.6 Composition of Functions

• Composition

• Put one function into the other.  
(Like substitution)

• Written g(f(x))

• Said “g of f of x”

• Means that the output (range) of f 
is the input (domain) of g.  Work 
from the inside out.  Do f(x) first 
then g(x).

• f(x) gets substituted into g(x)
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𝑥5.6 Composition of Functions

• Let 𝑓 𝑥 = 3𝑥 − 5 and 
𝑔 𝑥 = 𝑥2 + 1.

• Find the indicated value.

• a. g(f (2))

• b. f(g(3))

• c. g(g(−3))

a. 𝑓 2 = 3 2 − 5 = 1 → 𝑔 𝑓 2 = 𝑔 1 = 12 + 1 = 2

b. 𝑔 3 = 33 + 1 = 10 → 𝑓 𝑔 3 = 𝑓 10 = 3 10 − 5 = 5

c. 𝑔 −3 = −3 2 + 1 = 10 → 𝑔 𝑔 −3 = 𝑔 10 = 10 2 + 1 = 101
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𝑥5.6 Composition of Functions

• Let 𝑓 𝑥 = 3𝑥−1 and 𝑔(𝑥) = 4𝑥 − 5.
Perform the indicated operation and 
state the domain.

• a. f(g(x))

• b. g(f(x))

• c. f(f(x))

a. g substituted into f. 𝑓 𝑔 𝑥 = 3 4𝑥 − 5 −1 =
3

4𝑥−5

Domain of g is all real numbers. Domain of 𝑓 𝑔 𝑥  is 4𝑥 − 5 ≠ 0 → 𝑥 ≠
5

4

b. f substituted into g. 𝑔 𝑓 𝑥 = 4 3𝑥−1 − 5 = 12𝑥−1 − 5 =
12

𝑥
− 5

Domain of f is x≠0. Domain of 𝑔 𝑓 𝑥  is also x≠0.

c. f substituted into f. 𝑓 𝑓 𝑥 = 3 3𝑥−1 −1 = 3 3−1𝑥1 =
3𝑥

3
= 𝑥

Domain of f is x≠0. Domain of 𝑓 𝑓 𝑥  is all real numbers except the domain of 
the original input f limits the domain of the composition so the domain of f(f(x)) is 
x≠0.
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𝑥5.6 Composition of Functions

• The function C(x) = 8.74x represents the cost (in dollars) of producing x 
shirts. The number of shirts produced in t hours is represented by x(t) = 84t. 
(a) Find C(x(t)). (b) Evaluate C(x(40)) and explain what it represents.

• 271 #1, 5, 9, 13, 17, 21, 25, 31, 33, 37, 43, 45, 47, 49, 51

a. x is substituted into C. 𝐶 𝑥 𝑡 = 8.74 84𝑡 = 734.16𝑡

b. 𝐶 𝑥 40 = 734.16 40 = 29366.4 This is the cost of producing shirts for 40 

hours and the cost is $29,366.40
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𝑥

5.7 Inverse of a Function
After this lesson…

• I can explain what inverse functions are.

• I can fi nd inverses of linear and nonlinear functions.

• I can determine whether a pair of functions are inverses.
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𝑥5.7 Inverse of a Function

• Work with a partner.

• a. Consider each pair of functions, f and g, below. For each pair, create an 
input-output table of values for each function. Use the outputs of f as the 
inputs of g. What do you notice about the relationship between the equations 
of f and g?

• i. 𝑓 𝑥 = 4𝑥 + 3; 𝑔 𝑥 =
𝑥−3

4
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𝑥5.7 Inverse of a Function

• Sometimes you want to do the opposite operation that a given function or 
equation gives you.  

• To do the opposite, or undo, the operation you need the inverse function.
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𝑥5.7 Inverse of a Function

• Properties of Inverses

• x and y values are switched

• graph is reflected over the line y = x

• You can use the Horizontal Line test to determine if the inverse of a function 
is also a function.

• If a horizontal line can touch a graph more than once, then the inverse is 
not a function.
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𝑥5.7 Inverse of a Function

• Definition of inverses

• Two functions are inverses if and only if

• 𝑓 𝑔 𝑥 = 𝑥 and 𝑔 𝑓 𝑥 = 𝑥
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𝑥5.7 Inverse of a Function

• Verify that 𝑓 𝑥 = 6 − 2𝑥 and 𝑔 𝑥 =
6−𝑥

2
 are inverses.

[f  g](x) = 6 – 2((6 - x)/2) = 6 – 2(3 – x/2) = 6 – 6 + x = x
[g  f](x) = (6 – (6 – 2x))/2 = (6 – 6 + 2x)/2 = 2x/2 = x
yes they are inverses
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𝑥5.7 Inverse of a Function

• Finding inverses

• Inverses switch the x and y coordinates

• Switch x and y and solve for y.

• 𝑦 = 2𝑥 + 7

𝑦 = 2𝑥 + 7
𝑥 = 2𝑦 + 7
𝑥 − 7 = 2𝑦
𝑥 − 7

2
= 𝑦
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𝑥5.7 Inverse of a Function

• Find the inverse 

• 𝑓 𝑥 = 𝑥4 + 2, 𝑥 ≤ 0

Rewrite f(x) as y  𝑦 = 𝑥4 + 2, 𝑥 ≤ 0 
Switch the x and y  𝑥 = 𝑦4 + 2, 𝑦 ≤ 0
Solve for y  𝑥 − 2 = 𝑦4, 𝑦 ≤ 0 

   𝑦 = ±
4

𝑥 − 2, 𝑦 ≤ 0

Rewrite y as 𝑓 −1 𝑥   𝑓−1 𝑥 = −
4

𝑥 − 2
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𝑥5.7 Inverse of a Function

• The power (in watts) of a lightbulb that has a resistance of 240 ohms is 
represented by 𝑓 𝑥 = 240𝑥2, where x is the electric current of a lightbulb in 
amperes. Find and interpret 𝑓−1 60 .

• 279 #1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 43, 45, 47, 51, 57, 71, 77, 83, 87, 91

𝑦 = 240𝑥2

𝑥 = 240𝑦2

𝑥

240
= 𝑦2

±
𝑥

240
= 𝑦

𝑓−1 𝑥 =
𝑥

240

𝑓−1 60 =
60

240
=

1

2

Current in a lightbulb with 60 watts of power
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